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Abstract: In order to foster electric vehicle (EV) adoption rates, the availability of a pervasive and
efficient charging network is a crucial requirement. In this paper, we provide a decision support
tool for helping policymakers to locate and size EV charging stations. We consider a multi-year
planning horizon, taking into account different charging technologies and different time periods
(day and night). Accounting for these features, we propose an optimization model that minimizes
total investment costs while ensuring a predetermined adequate level of demand coverage. In
particular, the setup of charging stations is optimized every year, allowing for an increase in the
number of chargers installed at charging stations set up in previous years. We have developed a
tailored heuristic algorithm for the resulting problem. We validated our algorithm using case study
instances based on the village of Gardone Val Trompia (Italy), the city of Barcelona (Spain), and
the country of Luxembourg. Despite the variability in the sizes of the considered instances, our
algorithm consistently provided high-quality results in short computational times, when compared
to a commercial MILP solver. Produced solutions achieved optimality gaps within 7.5% in less than
90 s, often achieving computational times of less than 5 s.

Keywords: charging station location; charging infrastructure planning; electric vehicles; facility location

1. Introduction

Due to environmental concerns, electric vehicles (EVs) are increasingly gaining im-
portance as efficient and clean transport modes. Indeed, the widespread adoption of EVs
is prioritized by various policymakers to mitigate climate change impacts and foster sus-
tainability. However, the diffusion of these vehicles is challenged by several adoption
barriers, such as relatively high prices, safety concerns, and relatively poor performance [1].
Additionally, sparse public charging infrastructure is one of the most significant adoption
barriers for private EV users [2]. Therefore, a well-planned design of a pervasive charging
network is crucial to facilitating users’ recharging access and stimulating EV adoption. Fur-
thermore, Sustainable Development Goal 7 (SDG7) calls for ensuring “universal access to
affordable, reliable and modern energy services”, expanding infrastructure, and upgrading
suitable technologies, so as to make energy supply available to everyone.

Planning the locations and capacities of public charging infrastructure is a complex
task as it encompasses various intertwined issues. Namely, EV chargers should be spread
out in a way that facilitates easy access to users. However, the construction and mainte-
nance of charging infrastructure can be costly. The magnitude of such investments, coupled
with the projected growth in EV adoption, suggests that the strategic planning of charging
infrastructure should be done by considering a multi-year planning horizon. Further-
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more, different charging technologies should be evaluated, according to user preferences
and needs.

We investigate the problem of locating and sizing public charging stations (CSs) for
private EV users; we consider a multi-year planning horizon as well as multiple charging
technologies. In particular, we consider slow and fast charging technologies. The former is
more suited for EVs parked for long durations, such as at home or work [2], whereas the
latter is suited for major urban motorways and dense road traffic areas. The specifications
of our problem were identified through the eCharge4Drivers project, which is funded by
the European Union Horizon 2020 program.

The design process of an adequate network of public CSs can be decomposed into
three major conceptual steps. The first step consists of estimating the charging demand for
different technologies in the considered area. Two main modeling approaches are used for
this purpose [3]: (a) estimating origin–destination traffic flows, with the aim of intercepting
recharging needs during trips, and (b) aggregating demand in zones (e.g., neighborhoods)
considered as nodes of a network. We use demand estimates derived from the second
approach, which is suitable for vehicles parked for long durations (e.g., at home or work)
in urban and semi-urban areas. The second step identifies a set of potential locations for
CSs. This is done on the basis of land-use planning, environmental effects, and safety
requirements. Furthermore, the compatibility of locations with charging technologies
(e.g., fast chargers) is identified. This typically includes the consideration of energy grid
capabilities and possible upgrades. Given the input from the first two steps, the third
step consists of optimizing the locations of CSs along with their sizing. The latter entails
establishing the number of chargers of each technology to install at a CS. This paper is
centered on modeling and developing an efficient solution algorithm for the third step.
However, we validate our model using input from the first two steps, which is derived
from the eCharge4Drivers project. We were provided with demand estimates for each
technology for two daily periods (i.e., daytime and nighttime), for a set of zones. As we
investigate the problem of locating and sizing public CSs, we presume that the demand
(used as input to our problem) already discounts the charging demand that is satisfied by
home charging. Moreover, zones were also classified as potential CS locations in terms of
their ability to accommodate fast and slow charging technologies. Finally, the existing CSs
were also provided as input.

We modeled a multi-year charger location and sizing problem. We simultaneously
considered expanding the charging capacities of existing CSs by installing more chargers,
setting up new CSs, and determining their number of chargers. To this end, we considered
costs related to setting up a new CS and the costs of installing chargers in a setup CS.
These costs depend on the installed technology. Moreover, the capacity of each charging
technology was modeled via an input parameter expressed as the amount of kWh it could
provide in a period. As such, our model is general and can work with any charging
technology, which is specified through input parameter values. For more details concerning
the latest developments in charging technologies, we refer the reader to the following
surveys [4–7]. The objective of the problem is to minimize the total investment costs while
guaranteeing a target level of demand converge, expressed as a percentage of total demand.
Given the multi-year aspect of the problem, we assume that location and sizing decisions
are performed at the beginning of each year, and that installed chargers at a given CS remain
operational for the subsequent years. We denote the resulting problem as the incremental
charger location problem (ICLP).

We propose a mixed-integer linear programming (MILP) model for the ICLP. We
derive a maximum flow formulation for a subproblem of ICPL, in which the charging
infrastructure is fixed. Such a subproblem can efficiently be solved in polynomial time
using well-established algorithms. We use this result in developing an efficient heuristic
algorithm for the ICLP based on iteratively installing CSs and chargers at promising
locations until the desired level of coverage is reached. Finally, we accelerate our proposed
algorithm by using a priority-based strategy, which significantly reduces the computational
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effort associated with the identification of promising locations at each iteration of the
algorithm. We validate the algorithm on three case study instances obtained through the
eCharge4Drivers project. Specifically, we show that our algorithm consistently produces
high-quality results in a fraction of the time required by a state-of-the-art commercial MILP
solver. Finally, we note that maximum flow problems can be very efficiently solved by
existing open-source algorithms. Thus, our algorithm can be easily implemented by a
broad audience, as it does not necessitate the use of commercial MILP solvers that often
require costly software licenses.

To summarize, the contributions of this paper are as follows.

• We model a multi-year charger location and sizing problem by considering multiple
charging technologies and periods (ICLPs). Specifically, we consider that the demand
for each year, technology, and period is provided for a set of zones.

• We reformulate the single-year ICLP with a fixed charger infrastructure as a maximum
flow problem.

• We utilize the maximum flow subproblem in developing an efficient heuristic algo-
rithm for the ICLP.

• We validate the proposed heuristic on three realistic case studies.

The rest of the paper is organized as follows. In Section 2, we briefly outline related
works on the charging location problem. In Section 3, we present MILP models for the
ICPL and several of its subproblems. We describe our proposed algorithm in Section 4,
and validate its performance through computational experiments in Section 5. Finally, we
discuss our conclusions and possible future research directions in Section 6.

2. Literature Review

Optimizing the location of CSs has received considerable attention in recent years
(see Kchaou-Boujelben [3] for a comprehensive survey). An important aspect of such
problems is related to the estimation and modeling of EV charging demand. In particular,
the models proposed in the literature often fall into one of two categories: flow-based
models and node-based models. In the former case, the demand is modeled through a set
of origin–destination trips, whose charging requirements are satisfied at possible locations
that intercept the traffic flow. This is suitable for locating CSs on motorways, where the
objective is to capture EV flows. In the latter case, the demand is assumed to be located on
a set of given nodes. Such demand models are suitable for locating CSs in inhabited areas
(e.g., neighborhoods) where EV users live or work. In this paper, we adopt a node-based
demand model. This choice stems from the addressed cases in the eCharge4Drivers project.
Furthermore, we assume that the energy demand is given as an input to the problem. Thus,
the problem of estimating energy demand is beyond the scope of this paper. However, we
remark that different methodologies can be applied to estimate the demand for EV charging,
such as data-driven techniques, machine learning, spatial statistical analysis (e.g., [8–12]).
In what follows, we focus on contributions related to optimizing CS locations considering
node-based demand.

A variety of modeling techniques has been employed in CS location optimization,
such as fixed-charge models [13], set covering models [8], and p-median models [14]. Those
models have been solved using a wide range of approaches, including exact methods [8,14],
approximate methods [15], spatial analysis techniques [10], evolutionary algorithms [16,17],
and neural networks [11]. The extensive survey by Kchaou-Boujelben [3] provides details
on the used solution methods.

An important distinction between models pertains to the choice of objective functions
used in the optimization. Several types of objective functions have been considered in the
literature, such as minimizing investment costs [15], maximizing covered demands [10],
and maximizing service levels. This last objective is typically achieved by minimizing the
users’ traveling costs/distances to installed chargers [14]. Several authors have considered
multiple objectives in the optimization simultaneously. Bai et al. [16] introduced a bi-
objective function by accounting for investment costs and service levels, determined by
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the users’ driving time to the chargers as well as recharging times. Given a fixed budget,
Cavadas et al. [9] maximized the satisfied demand, which was weighted to prevent users
from having to travel long distances for recharging. Analogously, Vazifeh et al. [12] ensured
demand satisfaction, minimized the user’s total excess driving distance to reach installed
CSs, and minimized the number of CSs. We consider minimizing investment costs while
guaranteeing that a given percentage of the demand is satisfied.

Two main cost components may be considered when minimizing investment costs.
Firstly, a setup cost, comprising land, construction, and grid upgrades; secondly, an instal-
lation cost, associated with each installed charger. The setup cost may vary depending on
the specific location, e.g., setting up a CS in the city center may be expensive, due to the
cost of renting/purchasing land in that area. Conversely, the installation cost is roughly
proportional to the number of installed chargers. When considering expanding the number
of chargers at an existing CS, the setup cost may be ignored. This possibility was explicitly
modeled by Bai et al. [16], who included a “saving cost” in their objective function, which
occurs whenever a CS is based at an existing gas station. We note that the installation cost
is meaningfully distinct from the setup cost when the optimization problem also considers
the sizing of chargers (i.e., determining the number of chargers to be installed at each CS);
thus, the problem explicitly models the charging capacity of the infrastructure.

The enforcement of capacity constraints is often done through an allocation-based
approach, where the charging demand is directly allocated to CSs to measure capacity
consumption. This is often done through a system optimum approach, where the model
is free to determine the allocation of demand to chargers as part of the optimization,
e.g., [9,13,18]. Ko and Shim [14] considered the nearest allocation rule, where demand is
allocated to the nearest open charger, whereas Xie et al. [15] and Hu et al. [11] considered
a simulation-based approach to allocate the demand. Furthermore, demand is usually
allowed to be allocated to any CS within a maximum distance [9,13], with some authors
opting to limit the amount of demand that can be allocated to distant chargers [18].

In some cases, locating and sizing decisions are not made simultaneously but are
addressed sequentially. For example, Xie et al. [15] proposed a two-stage approach for
locating renewable-powered charging stations on a highway network, where the locations
of CSs are first determined and then the capacities of the CSs and energy storage units are
established. Several authors simultaneously optimized the setup costs and the installation
costs (e.g., [19]). Sadeghi-Barzani et al. [20] minimized these costs by considering fast
chargers. They proposed a mixed-integer non-linear model for the resulting problem.
Frade et al. [18] defined a maximum covering model that establishes the number and ca-
pacities of CSs, in order to satisfy morning and peak hour requests within acceptable levels
of service. Zhu et al. [17] considered setup costs and installation costs while accounting for
user access costs. The authors formulated an integer programming model for the resulting
problem and solved the model via a genetic algorithm.

Considering the previously discussed literature, three additional features are funda-
mental to optimizing CS locations. First, the demand volume depends on different periods
of the day, e.g., day and night. Such a distinction was made in models by Frade et al. [18],
Dong et al. [10], and Cavadas et al. [9]. We considered distinct demand input values for day
and night periods. Second, several charging technologies exist (e.g., slow and fast), induc-
ing different costs and demand coverage characteristics. This was considered in [13,16]. We
consider the option of simultaneously installing fast and slow chargers at a single location.
Third, given the strategic nature of the problem, a multi-year planning horizon should be
considered. A multi-year planning horizon was considered by Hu et al. [11]. We adopt a
similar setting multi-year setting. Furthermore, we allow setting up new locations every
year, as well as expanding the capacities of locations installed in previous years.

We summarize the main features of the surveyed literature review in Table 1. The last
line of the table positions our paper with respect to the literature.
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Table 1. Comparison with representative papers.

Paper Application
Coverage Re-

quirement
Coverage
Condition

Demand
Alloca-

tion

Existing
Infras-

tructure
Capacity Objective

Problem
Charac-
teristics

Frade et al. (2011)
[18] city block max distance

dependent
optimal

allocation sizing maximize coverage P

Baouche et al.
(2014) [13] city full max range optimal

allocation
fixed

capacity
minimize setup plus

travel costs T

Sadeghi-Barzani
et al. (2014) [20] city block full max range minimum

distance sizing
minimize setup plus
energy loss(grid plus

EVs)
Cavadas et al.

(2015) [9] city max max range optimal
allocation

fixed
capacity maximize coverage P

Asamer et al.
(2016) [8] city max max range no yes no maximize coverage

Ko and Shim
(2016) [14]

city (taxi
network) full none nearest

sizing
(capacity
scenarios)

minimize travel cost

Zhu et al. (2016)
[17] metropolitan area full max range optimal

allocation sizing minimize installation
plus travel costs

Xie et al. (2018)
[15] highway network full max range simulation sizing

(2-step)
minimize setup plus

installation costs

Bai et al. (2019)
[16] city full none optimal

allocation
yes sizing

minimize setup plus
installation plus travel

costs
T

Bouguerra and
Layeb (2019) [19] city full max range optimal

allocation sizing
minimize setup plus

installation plus travel
costs

Dong et al. (2019)
[10] city max max range no no maximize coverage P

Vazifeh et al.
(2019) [12] metropolitan area full distance

dependent no fixed
capacity minimize travel cost

Hu et al. (2020)
[11] metropolitan area max max range simulation sizing maximize coverage Y

This paper metropolitan area,
city, village full/partial max range optimal

allocation
yes sizing minimize setup plus

installation costs P Y T

Problem characteristics: Y multiple years; P multiple periods; T multiple technologies.

3. Problem Statement and Formulations

The ICLP is a multi-year planning problem centered on determining the locations of
CSs and sizing their installed chargers. We consider minimizing the setup costs and instal-
lation costs, while guaranteeing that a target level of coverage is reached. Furthermore, we
account for multiple demand periods (day and night) and multiple charging technologies
(slow and fast).

We denote by P the set of periods, the set of available charging technologies as K, and
the set of years as T. The objective of the problem involves the minimization of the total
infrastructure investment cost while reaching a target level of coverage of Ψt percent of
the total demand for each year t ∈ T. Let J denote the set of locations where CSs may be
built, including locations already setup with existing CSs and chargers. Let I be the set of
locations to be served (i.e., demand zones). We denote by dij the distance between location
i ∈ I and j ∈ J. Users are willing to walk for a maximum range of D to reach a CS. Thus,
the charging demand of location i ∈ I may only be allocated to locations within a D radius,
i.e., j ∈ J : dij ≤ D. We note that this potential coverage can be easily changed by the user.
Indeed, what is needed in terms of input is a parameter indicating if location i ∈ I could
potentially be served by location j ∈ J. Thus, if the user possesses such information, it can
easily be used instead of the maximum range.

A fixed cost of f k
j is paid to set up location j for technology k. Each location j ∈ J may

have up to Mk
j chargers of technology k installed in total, and installing each charger entails

a cost of ck
j . We consider that certain charging infrastructures may exist before the start of

the planning horizon. To capture this, parameter z̄0k
j is one if location j is already setup for

technology k at the start of the planning horizon. Similarly, parameter x̄0k
j indicates the

number of chargers with technology k that are already installed at location j at the start of

the planning horizon. We denote by a
tpk
i the charging demand for location i for technology

k, in period p, in year t. The demand for each node is expressed in kWh per period. We
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assume that demand is allocated to chargers in a system optimum approach. Thus, the
optimization model establishes the assignment of demands to CSs, while respecting the
range and capacity constraints. Furthermore, we consider that a single charger using
technology k may provide up to qk kWh per period.

3.1. Incremental Charger Location Problem Formulation

We formulate the ICLP as a MILP. We denote by xtk
j the number of chargers installed

at location j with technology k at the beginning of year t. Variable ztk
j is one if location j

is setup for technology k in year t, and zero otherwise. Variable y
tpk
ij is the percentage of

allocated demand from location i for technology k in year t and period p to chargers at
location j.

[ICLP]min ∑
t∈T

∑
k∈K

∑
j∈J

( f k
j ztk

j + ck
j xtk

j ) (1)

∑
j∈J:dij≤D

y
tpk
ij ≤ 1 ∀t ∈ T, p ∈ P, k ∈ K, i ∈ I (2)

∑
p∈P

∑
k∈K

∑
i∈I

∑
j∈J:dij≤D

a
tpk
i y

tpk
ij ≥ Ψt ∑

p∈P
∑
k∈K

∑
i∈I

a
tpk
i ∀t ∈ T (3)

∑
i∈I:dij≤D

a
tpk
i y

tpk
ij ≤ qk( ∑

t′∈T:t′≤t

xt′k
j + x̄0k

j ) ∀t ∈ T, p ∈ P, k ∈ K, j ∈ J (4)

( ∑
t′∈T:t′≤t

xt′k
j + x̄0k

j ) ≤ Mk
j ( ∑

t′∈T:t′≤t

zt′k
j + z̄0k

j ) ∀t ∈ T, p ∈ P, k ∈ K, j ∈ J (5)

(∑
t∈T

ztk
j + z̄0k

j ) ≤ 1 ∀k ∈ K, j ∈ J (6)

0 ≤ y
tpk
ij ≤ 1 ∀t ∈ T, p ∈ P, k ∈ K, i ∈ I, j ∈ J : dij ≤ D (7)

ztk
j ∈ {0, 1}, xtk

j ≥ 0 ∀t ∈ T, k ∈ K, j ∈ J (8)

Objective function (1) minimizes the total setup costs and installation costs. Constraint (2)
ensures that no more than the available charging demand is allocated to chargers. Con-
straint (3) enforces the target level of coverage for each year. Constraint (4) sets the available
charging supply of the chargers. Constraint (5) links the setup activation variables with the
charger installation variables. Constraint (6) ensures that the setup cost for each location is
accounted for at most once.

Our proposed algorithm is based on iteratively solving subproblems of the ICLP. We
present the relevant subproblems in the following subsections.

3.2. Single-Year Incremental Charger Location Problem

In this section, we present a rolling horizon approach to solving the ICLP. This entails
optimizing the location of CSs and their installed chargers one year at a time. We use
this approach to benchmark the performance of our proposed algorithm in the computa-
tional experiments.

When solving the ICLP in a rolling horizon fashion, all chargers installed in the
previous years are considered fixed for the subsequent years. Thus, parameter z̄tk

j is one
if location j is setup for technology k before the beginning of year t. Note that parameter
z̄0k

j is a special case of this notation, as it denotes whether or not a location has been setup
for technology k before the start of the planning horizon, i.e., year 0. Similarly, parameter
x̄tk

j represents the number of chargers with technology k installed at location j before the
beginning of year t. We solve the ICLP for each year sequentially until the end of the
planning horizon. We refer to the single-year version of the problem as the ICPL(t), where
t is the year that is being optimized.
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We formulate the ICLP(t) as a MILP. We denote by xk
j the number of chargers installed

at location j with technology k. Variable zk
j is one if location j is setup for technology k,

and zero otherwise. Variable y
pk
ij is the percentage of allocated demand from location i for

technology k at period p to chargers at location j.

[ICLP(t)]min ∑
k∈K

∑
j∈J

( f k
j zk

j + ck
j xk

j ) (9)

∑
j∈J:dij≤D

y
pk
ij ≤ 1 ∀p ∈ P, k ∈ K, i ∈ I (10)

∑
p∈P

∑
k∈K

∑
i∈I

∑
j∈J:dij≤D

a
tpk
i y

pk
ij ≥ Ψt ∑

p∈P
∑
k∈K

∑
i∈I

a
tpk
i (11)

∑
i∈I:dij≤D

a
tpk
i y

pk
ij ≤ qk(xk

j + x̄t−1,k
j ) ∀p ∈ P, k ∈ K, j ∈ J (12)

(xk
j + x̄t−1,k

j ) ≤ Mk
j (z

k
j + z̄t−1,k

j ) ∀p ∈ P, k ∈ K, j ∈ J (13)

(zk
j + z̄t−1,k

j ) ≤ 1 ∀k ∈ K, j ∈ J (14)

0 ≤ y
pk
ij ≤ 1 ∀p ∈ P, k ∈ K, i ∈ I, j ∈ J : dij ≤ D (15)

zk
j ∈ {0, 1}, xk

j ≥ 0 ∀k ∈ K, j ∈ J (16)

Objective function (9) minimizes the setup costs and installation costs for year t. Con-
straint (10) ensures that no more than the available charging demand is allocated to chargers
for each location. Constraint (11) enforces the target level of coverage. Constraint (12) sets
the available charging supply of the chargers. Constraint (13) links the setup activation
variables with the charger installation variables. Constraint (14) ensures that the setup cost
for each location is accounted for at most once.

3.3. ICLP(t) with Fixed Infrastructure

If all infrastructure variables are fixed (i.e., variables x and z are fixed), the ICLP(t)
becomes a feasibility problem. Specifically, the problem pertains to whether or not the
target level of demand coverage can be reached with a feasible allocation of the demand to
chargers. Thus, it is possible to prove the feasibility of a given configuration of chargers
by maximizing the total demand covered by the fixed infrastructure, and comparing it

to Ψt ∑p∈P ∑k∈K ∑i∈I a
tpk
i . We recall that z̄tk

j is one if location j is setup for technology k

before the beginning of year t and that parameter x̄tk
j represents the number of chargers

with technology k installed at location j before the beginning of year t. Thus, given the
existing infrastructure at year t described by x̄ and z̄, the formulation of the problem of
maximizing the covered demand is as follows:

[ICLP(t|x̄z̄)]max ∑
p∈P

∑
k∈K

∑
i∈I

∑
j∈J:dij≤D

a
tpk
i y

pk
ij (17)

∑
j∈J:dij≤D

y
pk
ij ≤ 1 ∀p ∈ P, k ∈ K, i ∈ I (18)

∑
i∈I:dij≤D

a
tpk
i y

pk
ij ≤ qk x̄tk

j ∀p ∈ P, k ∈ K, j ∈ J (19)

0 ≤ y
pk
ij ≤ z̄tk

j ∀p ∈ P, k ∈ K, i ∈ I, j ∈ J : dij ≤ D (20)

3.4. Maximum Flow Formulation of [ICLP(t|x̄z̄)]

We now reformulate [ICLP(t|x̄z̄)] as a maximum flow problem on a directed graph
G(x̄z̄) = (N, A(x̄z̄)). We note that maximum flow problems can be very efficiently solved
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by existing algorithms. Thus, the subsequent formulation is instrumental to our proposed
algorithm in Section 4. Let s denote the source node, and t denote the sink node of the graph.
Each potential charger location j ∈ J, for each technology k ∈ K and each period p ∈ P,

is associated with node β
pk
j . Similarly, each demand location i ∈ I for each technology

k ∈ K and each period p ∈ P is associated with node ξ
pk
i . Thus, the node set of the graph is

N = {s, t} ∪ {β
pk
j ∀j ∈ J, k ∈ K, p ∈ P} ∪ {ξ

pk
i ∀i ∈ I, k ∈ K, p ∈ P}.

The arcs of G(x̄z̄) express how the demand is assigned to chargers. The source node s is

connected through a directed arc to each charger node β
pk
j with capacity qk x̄tk

j , ∀j ∈ J, k ∈ K.

The flow on arc (s, β
pk
j ) represents the total charging demand that is supplied by the

chargers at location j with technology k in period p. Similarly, each demand node ξ
pk
i is

connected to the sink node t with capacity a
tpk
i , ∀i ∈ I, p ∈ P, k ∈ K. The flow of those

arcs represents the amount of charging demand of location i for technology k in period

p, which is satisfied by the installed chargers. Lastly, each charger node β
pk
j is connected

by an arc to all demand nodes in the range of j with technology k in period p, i.e., ξ
pk
i ,

∀i ∈ I : dij ≤ D. The flow on arc (β
pk
j , ξ

pk
i ) represents the amount of charging demand at

location i for technology k in period p, which is satisfied by chargers installed at location j.

The capacity of an arc (β
pk
j , ξ

pk
i ) is min(a

tpk
i , qk x̄tk

j ), i.e., the minimum between the demand
of location i for technology k in period p and the capacity of the chargers installed at j.
Note, however, that the capacity of this last class of arcs can be relaxed without loss of
generality. In Figure 1, we present a visual example of the construction of graph G(x̄z̄), for
fixed infrastructure described by x̄z̄.

(a) Example charger configuration (b) Graph G(xz) (c) Arc Capacities
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Figure 1. Example of the construction of graph G(x̄z̄) from a charger configuration. For simplicity,
P = {1}. Dashed arcs have a capacity of 0.

The maximum amount of demand covered by the charging infrastructure described by x̄z̄
equals the maximum flow on graph G(x̄z̄) from s to t. The charging infrastructure described

by x̄z̄ is then feasible if the maximum flow is greater or equal to Ψt ∑p∈P ∑k∈K ∑i∈I a
tpk
i .

4. Successive Incremental Algorithm

We propose an efficient successive incremental heuristic algorithm for the ICLP(t). We
present our algorithm in two phases. We first present the main elements of the algorithm.
Then, in Section 4.1, we introduce algorithmic enhancements to these elements.
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Starting from the already existing infrastructure at year t, the heuristic iteratively
installs chargers at promising locations, until the targeted level of demand coverage is
reached. We use variable xk

j , initialized to zero, to indicate the current number of charg-

ers installed at location j with technology k in the solution. Thus, the value xk
j + x̄t−1,k

j

represents the total number of chargers installed at location j with technology k at the
current iteration of the heuristic. Similarly, we use variable zk

j , initialized to zero, to indicate

whether location j has been set up for technology k in the heuristic solution, and zk
j + z̄t−1,k

j

to indicate whether location j is currently setup for technology k. At each iteration, we
select a location, technology, and number of chargers, and update the corresponding x and
z variables accordingly. Then, we measure the level of demand coverage achieved by the
current solution and, if the targeted level of coverage has not been reached, the algorithm
is iterated.

The location, technology, and number of installed chargers are selected at each iteration
based on the two-step approach. In the first step, a restricted set of candidate locations
is selected. This is done by identifying up to two locations for each technology: one
representing the most promising location that has already been set up for that technology,
and one for the most promising location that has not yet been set up for that technology.

The selection is based on the total uncovered demand that could be covered by
installing any number of additional chargers at those locations. Formally, the computation
of the total uncovered demand that could be covered is performed for each location i and
technology k, by temporarily installing a single charger of infinite capacity at location i
using technology k and measuring the increase in covered demand compared to the current
solution. This results in a set of up to 2|K locations to be considered for the next step.

In the second step, for each location in the restricted set of candidate locations, we
consider each possible number of installed chargers, and measure the increase in coverage,
achieved by installing the number of chargers, divided by the required installation and
setup cost (if necessary). Once all locations have been evaluated in this way, we select the
best combination of location, technology, and number of installed chargers according to
the measured coverage increase per unit investment. Then, those chargers are installed
at the selected location. Afterward, if the targeted level of coverage is not achieved, the
procedure is iterated. In the following, we will detail each step of the algorithm.

To perform the selection of the restricted set of candidate locations (performed in

the first step of the algorithm), let us denote by δ
pk
j the maximum amount of additional

charging demand that could be covered in period p by installing additional chargers with
technology k at location j. To measure it, we consider a modified version of G(x̄z̄) where

the capacity of arc (s, β
pk
j ) is set to +∞ and solves the associated maximum flow problem.

The difference between the current covered demand and the maximum flow computed

on the modified graph corresponds to δ
pk
j . For ease of notation, let δk

j = ∑p∈P δ
pk
j . For

each technology k ∈ K, we identify the most promising new location (π0k) and the most
promising already setup location (π1k) as follows.

π0k = arg max
j∈J : zk

j +z̄t−1,k
j =0

δk
j ; (21)

π1k = arg max
j∈J : zk

j +z̄t−1,k
j >0

δk
j . (22)

For the second step of the algorithm, each of the 2|K candidate locations is then evaluated
by considering each possible number of chargers that could be installed at that location
and dividing the achieved increase in covered demand reached by installing the number
of chargers against the required installation and setup costs. Note that the setup cost is
only accounted for when evaluating new locations. For each candidate location π with
technology k, the possible number of chargers that could be installed is θ ∈ 1, . . . , (Mk

π −
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xk
π − x̄t−1,k

π ). The amount of the charging demand that could be covered by installing

θ chargers at location π for technology k is computed based on δ
pk
π , ∀p ∈ P as follows:

∑
p∈P

min(qkθ, δ
pk
π ). (23)

We denote by ν(k, π, θ) the increase in covered demand divided by the potential setup and
installation cost associated with installing θ chargers with technology k at location π:

ν(k, π, θ) =















∑p∈P min(qkθ,δpk
π )

f k
j +θck

j

if zk
π + z̄t−1,k

π = 0;

∑p∈P min(qkθ,δpk
π )

θck
j

if zk
π + z̄t−1,k

π > 0.
(24)

Out of the candidate locations that we previously identified, we select the location, technol-
ogy, and number of chargers according to the most promising value of ν. Thus, formally:

(k, π, θ) = arg max
k∈K,π∈{π0k ,π1k},θ∈1,...,(Mk

π−zk
π−z̄t−1,k

π )

ν(k, π, θ). (25)

Then, we install θ chargers of type k at location π, update the associated variables (i.e.,
xk

j and zk
j ), and compute the total coverage achieved by adding these chargers via the

maximum flow problem. If the achieved coverage reaches Ψt ∑p∈P ∑k∈K ∑i∈I a
tpk
i , then

we terminate; otherwise, the procedure is repeated until the targeted level of coverage is
reached. The developed heuristic is described in Algorithm 1.

Algorithm 1: The successive incremental algorithm.
1 Algorithm Constructive()

2 xk
j ← 0 ∀k ∈ K, j ∈ J;

3 zk
j ← 0 ∀k ∈ K, j ∈ J;

4 C ← [ICLP(x̄z̄|t)];

5 while C ≤ Ψ ∑p∈P ∑k∈K ∑i∈I a
tpk
i do

6 π0k ← arg max
j∈J : zk

j +z̄t−1,k
j =0

δk
j ∀k ∈ K;

7 π1k ← arg max
j∈J : zk

j +z̄t−1,k
j >0

δk
j ∀k ∈ K;

8 (k, π, θ)← arg max
k∈K,π∈{π0k ,π1k},θ∈1,...,(Mk

π−zk
π−z̄t−1,k

π )
ν(k, π, θ);

9 xk
π ← xk

π + θ;

10 if zk
π + z̄t−1,k

π = 0 then

11 zk
π ← 1;

12 end

13 C ← [ICLP(x̄z̄|t)];
14 end

15 return x, z;

4.1. Priority-Based Successive Incremental Algorithm

The increase in the maximum demand that can be met by installing more chargers at a

specific location, represented by δ
pk
j , is an important factor in the developed heuristic. We

recall that the computation of δ
pk
j involves solving a maximum flow problem, which can be

done very efficiently. However, lines 6 and 7 of Algorithm 1 require the computation of all

values δ
pk
j , ∀p ∈ P, k ∈ K, j ∈ J, which is still very computationally expensive. Therefore,

we modify Algorithm 1 to take advantage of the fact that the value of δ
pk
j may only decrease

at each iteration, ∀p ∈ P, k ∈ K, j ∈ J. For each technology k ∈ K, we introduce two priority
queues: Qk0 and Qk1. A priority queue is a queue data structure that is similar to a standard
queue, with the additional feature that each element has a priority associated with it. When
an element is added to the queue, it is added based on its priority, so that the element with
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the highest priority is at the front of the queue and the element with the lowest priority
is at the back. The purpose of queues Qk0 is to facilitate the evaluation of expression (21),
whereas queues Qk1 do so for expression (22). Within Qk0, each location j ∈ J : zk

j + z̄j = 0

is stored in the queue with priority δ̄k
j , where δ̄k

j is an upper bound to δk
j . To compute π0k,

we examine the first element of the queue: π̄. The priority associated with π̄ is an upper
bound to δk

π̄ . Then, we compute δk
π̄ by solving the associated maximum flow problem and

updating the priority of π̄. If π̄ is still the first element of the queue, π0k = π̄; otherwise,
the process is repeated until the first element remains unchanged. Indeed, since the priority
values of each element stored in Qk0 are upper bounds to their respective δk

j , we can

conclude that π̄ = π0k = arg max
j∈J : zk

j +z̄t−1,k
j =0 δk

j . This significantly reduces the number

of times the δk
j needs to be computed and reduces the overall runtime of our algorithm. At

the start of the algorithm, we populate Qk0 with each element j ∈ J : zk
j + z̄t−1,k

j = 0 with

priority ∑p∈P ∑i∈I : dij≤D a
tpk
i . Similar considerations hold for Qk1. We update Algorithm 1

to use these queues in Algorithm 2. We use Algorithm 2 in our experiments in a rolling
horizon fashion, i.e., we optimize the location of chargers one year at a time. To solve the
maximum flow problem in the heuristic, we use a push–relabel algorithm. This results in the
worst-case complexity ofO(M|K||P||T||I|5) for the entire algorithm, where M corresponds
to the maximum number of chargers of a single technology that may be installed at a single
location. We remark however that, in practice, the effective computational complexity of
the algorithm is much lower.

Algorithm 2: The priority-based successive incremental algorithm.
1 Algorithm Constructive()

2 xk
j ← 0 ∀k ∈ K, j ∈ J;

3 zk
j ← 0 ∀k ∈ K, j ∈ J;

4 C ← [ICLP(x̄z̄|t)];
5 Qk0 ← PriorityQueue() ∀k ∈ K;
6 Qk1 ← PriorityQueue() ∀k ∈ K;

7 Qk0[j]← ∑p∈P ∑i∈I : dij≤D a
tpk
i ∀k ∈ K, j ∈ J : zk

j + z̄t−1,k
j = 0;

8 Qk1[j]← ∑p∈P ∑i∈I : dij≤D a
tpk
i ∀k ∈ K, j ∈ J : zk

j + z̄t−1,k
j > 0;

9 while C ≤ Ψ ∑p∈P ∑k∈K ∑i∈I a
tpk
i do

10 π0k ←PopUpdate(Qk0, k)∀k ∈ K;
11 π1k ←PopUpdate(Qk1, k)∀k ∈ K;
12 (k, π, θ)← arg max

k∈K,π∈{π0k ,π1k},θ∈1,...,(Mk
π−zk

π−z̄t−1,k
π )

ν(k, π, θ);

13 xk
π ← xk

π + θ;

14 if zk
π + z̄t−1,k

π = 0 then

15 zk
π ← 1;

16 end

17 C ← [ICLP(x̄z̄|t)];
18 Qk1[π]← δk

π ;
19 end

20 return x, z;
21 Procedure PopUpdate(Q,k)
22 π̄ ← Peek(Q);
23 while true do

24 Q[π̄]← δk
π̄ ;

25 if π̄ = Peek(Q) then

26 break;
27 end

28 π̄ ← Peek(Q)

29 end

30 Pop(Q);
31 return π̄;
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5. Computational Results

The successive incremental algorithm was implemented in Python version 3.9 using
python-igraph version 0.10.2 [21] to solve the maximum flow problem used to evaluate
the ICLP(t|x̄z̄). To validate the performance of our proposed algorithm, we compared its
solutions to the exact solutions obtained by solving the ICLP and the ICLP(t) in a rolling
horizon fashion using the CPLEX solver version 12.10. We considered a planning horizon
of three years. Both formulations were implemented in Julia version 1.8, using the JuMP
modeling interface version 1.7. The ICLP formulation was run with a three-hour time
limit, whereas for each year, the ICLP(t) was solved with a one-hour time limit (totaling a
maximum run time of three hours for three years). All experiments were run on 3.20 Ghz
AMD Ryzen 5 1600, with 16 GB of RAM and 12 cores, running Windows 10, using a
single thread.

We validated our algorithm on three test cases considered in the eCharge4Drivers;
namely, the village of Gardone Val Trompia (Italy), the city of Barcelona (Spain), and the
country of Luxembourg. Each of those instances is solved across a three-year planning
horizon (2024–2026), considering two demand periods (day and night) per year and two
charging technologies (fast and slow). The area of each instance is partitioned into the set
of locations to be served I. After discussions with the project partners, the costs of setting
up a location to accommodate chargers were set at EUR 20,000 for slow chargers and EUR
100,000 for fast chargers. Additionally, the cost of a single slow charger was set to EUR
7500 and EUR 80,000 for a single fast charger. Lastly, after discussions with the project
partners, the charging capacities of the slow charger and fast charger were estimated (from
charging session data) to be 28 kWh/day and 300 kWh/day, respectively. We note that
these values correspond to about 25% of the theoretical capacity of the assumed chargers.
This reduction is meant to capture the fact that chargers should not be assumed to be
operational at full capacity, as users are not willing to wait for a CS to be free. Thus, this
reduction implicitly acts as a buffer against demand uncertainty. An estimation of the
demand (expressed in kWh/day) for each combination of location, period, and technology
was provided to us by project partners. These data are not publicly available, as they were
derived from confidential data.

The Gardone Val Trompia instance represents a small-sized instance (with
|I| = 113 locations) in the context of a village area; the Barcelona instance represents
a medium-sized instance (with |I| = 656 locations) within the context of a city, and lastly,
the Luxembourg instance represents a country (with |I| = 2674 locations). The demand for
each year was computed by assuming a linear growth of 5% per year over the estimated
demand from the year 2023. For generality, the set of potential charger locations J was set
equal to I, while accounting for all exiting charging infrastructure in J. For each area, we
conducted tests with coverage target levels of 70%, 80%, and 90%.

Considering the three coverage target levels, Tables 2–4 show the results for Gardone
Val Trompia, Barcelona, and Luxembourg, respectively. Under the title ICLP-[C1], the tables
report the best-obtained cost values via CPLEX within the allotted time (i.e., three hours),
where the costs include the setup and installation costs. The Gap column (%) shows the final
optimality gap reported by CPLEX, while the t(s) column reports the runtime in seconds.
The latter is lower than 10,800 only in cases where CPLEX found the optimal solution.
Under the title ICLP(t)-[C2], we report CPLEX’s results on the ICLP(t) run in a rolling
horizon of three years. Under the cost column, we report the best-obtained cost values via
CPLEX for each year within the allotted time (i.e., one hour per year). The Gap(%) column
shows the final optimality gap reported by CPLEX for each year. The Total cost column
reports the cumulative yearly setup costs and installation costs, while the Total t(s) column
shows the cumulative run time over the three years. The ICLP(t)-H -[C3] columns report
the results of our proposed algorithm. The columns under this title have an analogous
meaning to those presented by ICLP(t)-[C2]. The last three columns of Tables 2–4 compare
the solutions obtained by the three methods. Specifically, we report the gaps computed as
follows: Gap(A,B) = (costA−costB)

costA
. For the sake of convenience, in the tables, we use C1 to
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refer to the solutions computed using the ICPL (considering all three years), C2 to refer to
the solutions computed using the ICPL(t) (considering a single year in a rolling horizon
fashion), and C3 to refer to the solutions computed using the proposed algorithm.

Table 2. Computational results of the Gardone Val Trompia instance.

ICLP-[C1] ICLP(t)-[C2] ICLP(t)-H-[C3] Comparison

Target
Coverage
Level (%)

Year Cost Gap(%) t(s) Cost Gap(%) Total Cost Total t(s) Cost Total Cost Total t(s) Gap(C2,C1)(%) Gap(C3,C1)(%) Gap(C3,C2)(%)

70
1 280 0.0 280 204 280 280 0.0
2 0 0.0 280 204 0 280 0.0
3 295.0 3.1 10,800 15 0.0 295 204 15 295 1 0.0 0.0 0.0

80
1 330 0.0 330 464 350 350 5.7
2 0 0.0 330 464 0 350 5.7
3 345.0 2.2 10,800 15 0.0 345 464 0 350 1 0.0 1.4 1.4

90
1 400 0.0 400 2282 420 420 4.8
2 0 0.0 400 2282 0 420 4.8
3 415.0 3.0 10,800 15 0.0 415 2282 0 420 1 0.0 1.2 1.2

Tested approaches: C1: 3-year ICLP using CPLEX; C2: rolling horizon ICLP(t) using CPLEX; C3: rolling horizon

ICLP(t) using a constructive heuristic.

We observe that our proposed algorithm produces solutions that are approximately
7% from optimality in a fraction of the computational time required by CPLEX to solve the
same instances. In the large instances of the country of Luxembourg, the proposed heuristic
produces solutions that are within 6.9% of the best solutions obtained using CPLEX in less
than 90 s, whereas the same instances required well over one hour of computational time
when using CPLEX. Additionally, we remark that when solving the ICLP, and considering
all three years, CPLEX fails to converge to an optimal solution. In particular, for the large
Luxembourg instances with target coverage levels of 80% and 90%, the solver performed
very poorly. In those instances, CPLEX only managed to compute the naive solution
obtained by installing the maximum number of chargers at each location, therefore trivially
guaranteeing complete coverage of the demand. In the medium- and small-scale instances
based in the city of Barcelona and the village of Gardone Val Trompia, we achieved solutions
within 7.5% of the best solutions found by CPLEX in less than 5 s.

Table 3. Computational results of the Barcelona instance.

ICLP-[C1] ICLP(t)-[C2] ICLP(t)-H-[C3] Comparison

Target
Coverage
Level (%)

Year Cost Gap(%) t(s) Cost Gap(%) Total Cost Total t(s) Cost Total Cost Total t(s) Gap(C2,C1)(%) Gap(C3,C1)(%) Gap(C3,C2)(%)

70
1 6260 0.0 6260 16 6625 6625 5.5
2 360 0.0 6620 53 310 6935 4.5
3 6940.0 0.1 10,800 345 0.0 6965 64 505 7440 3 0.4 6.7 6.4

80
1 7490 0.0 7490 11 7885 7885 5.0
2 415 0.0 7905 21 490 8375 5.6
3 8285.0 0.0 515 420 0.0 8325 26 260 8635 3 0.5 4.1 3.6

90
1 8905 0.0 8905 388 9275 9275 4.0
2 790 0.0 9695 399 890 10,165 4.6
3 10,120.0 0.3 10,800 510 0.0 10,205 407 780 10,945 4 0.8 7.5 6.8

Tested approaches: C1: 3-year ICLP using CPLEX; C2: rolling horizon ICLP(t) using CPLEX; C3: rolling horizon

ICLP(t) using a constructive heuristic.
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Table 4. Computational results of the Luxembourg instance.

ICLP-[C1] ICLP(t)-[C2] ICLP(t)-H-[C3] Comparison

Target
Coverage
Level (%)

Year Cost Gap(%) t(s) Cost Gap(%) Total cost Total t(s) Cost Total cost Total t(s) Gap(C2,C1)(%) Gap(C3,C1)(%) Gap(C3,C2)(%)

70
1 18,690 0.2 18,690 3600 19905 19,905 6.1
2 1000 0.0 19,690 3842 1135 21,040 6.4
3 20,430.0 1.0 10,800 755 0.0 20,445 4216 915 21,955 67 0.1 6.9 6.9

80
1 23,245 0.2 23,245 3600 24,540 24,540 5.3
2 1195 0.0 24,440 3902 1255 25,795 5.3
3 672,545.0 96.3 10,800 1025 0.0 25465 3956 1055 26,850 77 −2541.1 −2404.8 5.2

90
1 28,260 0.5 28,260 3600 29,895 29,895 5.5
2 1370 0.7 29,630 7200 1485 31,380 5.6
3 672,545.0 95.6 10,801 1075 0.5 30,705 10,800 1130 32,510 89 −2090.3 −1968.7 5.6

Tested approaches: C1: 3-year ICLP using CPLEX; C2: rolling horizon ICLP(t) using CPLEX; C3: rolling horizon

ICLP(t) using a constructive heuristic.

Thus, we conclude that our algorithm is effective at generating high-quality solutions
within a short computational time.

Finally, the developed algorithm was also implemented in an online tool as part of
the eCharge4Drivers project. In Figures 2 and 3, we show a visualization produced by the
online tool of the solutions for the Barcelona and Luxembourg instances with 80% required
coverage. Each panel displays the installed chargers by the end of a single year.

Figure 2. Visualization of the solution obtained from the online tool for the Barcelona instance, with
80% required coverage.

Figure 3. Visualization of the solution on the online tool on the Luxembourg instance with 80%
required coverage.

6. Conclusions

We modeled a multi-year charger location and sizing problem, referred to as ICLP. This
problem combines a number of realistic features, including multiple charging technologies
and a distinction between the demand periods of the day. Furthermore, the setting up of
new locations every year was considered along with increasing the number of chargers
installed at locations set up in previous years. The objective of the ICLP is to minimize the
total costs entailed by setting up new locations and installing chargers while guaranteeing
a given service level. This is measured as the percentage of the total demand that is served
by the charging infrastructure.
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We developed MILP models for the ICLP and several of its subproblems. In particular,
we showed that the single-year subproblem with a given charging infrastructure can be
modeled as a maximum flow problem. We used this result to design a tailored successive
incremental algorithm for the ICPL. This algorithm does not require the use of MILP solvers
and, thus, may easily be applied in practice at no investment.

We validated the performance of our algorithm using a series of instances derived
from realistic case studies. Specifically, we compared our algorithm against a commer-
cial solver. We conclude that our algorithm achieves high-quality results in reasonable
computational times.

Our algorithm could be used to provide guidelines for local authorities or private
entities that are concerned with locating and sizing CSs. Such users would mainly need to
possess demand estimates for the zones of a considered area and estimates of the effective
capacity of the considered chargers.

Our model and proposed algorithm can be expanded to handle more realistic features
of the problem. First, the demand of a zone can potentially be split and covered by
two or more locations, which may not necessarily be within its vicinity. Furthermore,
demand uncertainty could be incorporated by introducing appropriate uncertainty sets
that model the operational behaviors of users. Moreover, various utilization rates can
be further elaborated by assuming different input values for the effective capacity level
for each location for each period. One of the assumptions made in our model entails
that a charger installed at a given year will remain operational in the subsequent years
of the considered planning horizon. Technological advances in terms of EVs, as well as
their charging infrastructure, can make certain technologies obsolete. Therefore, a valid
extension of our model may involve replacing (or removing) chargers during the planning
period. Additionally, accounting for bidirectional charging in CS location problems would
be an interesting extension. Finally, a highly relevant future research direction would be to
include aspects related to the production of energy from renewable energy sources for the
charging needs of electric vehicles.
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